Hill CSCI 151 Design Concepts: World of Zuul
	Task
	Original Code Modification
	Design Concepts
	Recommended Code Modification

	Remove code duplication
	In Game, printing room exit code is in printWelcome() & goRoom()
	- Code duplication
- Symptom of bad cohesion
	Refactoring code into printLocationInfo() method

	Add another direction of movement to North, East, South, West: Up/Down (for 1st floor, 2nd floor, basement, etc.)
	Requires changes to:
- Game.goRoom()
- Game.printLocationInfo()
- Room needs 2 more fields
- Room.setExits() needs 2 more parameters
- Game.createRooms needs to be updated
	- Difficult to find code, proposed fix is scattered across multiple methods & classes
- Symptom of tight coupling
- public fields mean poor encapsulation that enables tight coupling
	- Decouple Game & Room classes by using a private HashMap to store exits instead of public fields
- Change Room.setExits(N,E,S,W) to Room.setExit(direction, room)
- Add getExit() method
- Still need to change Game, but future exit direction changes will be localized to the Room class (increases cohesion of Room class)
- Where does code in printLocationInfo belong? In Game or Room? Create Room.getFullDescription()
- Now in Game.goRoom(), getting the
nextRoom = currentRoom.getExit(direction);
- Now code setting exits in Game.createRooms() is easier to understand
- Option: use ENUM for exit direction rather than String

	Now that we can go up & down, add a new room: cellar
	Requires changes to:
- Game.goRoom()
- Game.printLocationInfo()
- Game.createRooms()
- add public field in Room
- Room.setExits()
	Loose coupling makes code modifications easier & more localized
	- Game.createRooms()

	Add an additional command word, “look” that prints out the description & exits of the current room
	Requires changes to:
- validCommands field in CommandWords
- Game.processCommand()
- Game.printHelp()

	- processCommand() & validCommands are tightly coupled
- Following RDD, CommandWords printing should be in CommandWords
	- add command to CommandWords.validCommands
- add else if in Game.processCommand()
- add Game.look() method
- add static CommandWords.showAll() method and call from Game.printHelp()

	Add a different command language besides English
	Requires changes to:
- Game.processCommand()
- validCommands field in CommandWords
	- Game logic tightly tied to English
- Decouple by encapsulating command words as an enumerated type
	1. Convert CommandWords to be enumerated type, adding:
- command field, constructor, 1 enum element for each valid command + unknown
- add methods: getCommand, toString, & static getCommandWord
- update static methods isCommand & showAll
2. Update Command to store a CommandWord field (also update constructor & getCommandWord)
3. Update Parser:
- remove CommandWords field & initialization in constructor
- convert call to isCommand to be a static reference & update call to Command constructor by calling CommandWords.getCommandWord()
4. Update Game.processCommand to use new CommandWord enum instead of Strings
5. Now can update CommandWords to have a number of acceptable command strings, in many languages, by changing the constructor

[bookmark: _GoBack]
Extension: How would you add a different language besides English?

JTyS———
[reacsestbe

ey e [F——T
ey [[———
i T R s
o ket B i) e s e
I B e e
| S, (R
e

Eteen oy s o e e

